کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
233246 465330 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational modelling of shear-layer instabilities and vortex formation in DC plasma arcs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Computational modelling of shear-layer instabilities and vortex formation in DC plasma arcs
چکیده انگلیسی


• A dynamic model for direct-current (DC) plasma arcs in arc furnaces is presented.
• The model is used to study fluid-dynamic and magnetic instabilities in arcs.
• Fluid-dynamic instabilities usually initiate transient behaviour of the arc.
• Instabilities affect heat transfer and are sensitive to arc current and plasma gas.
• Instabilities occur in both 2D and 3D simulations.

The direct-current plasma arc is the principal heating and stirring element in plasma arc furnaces. The arc is a highly dynamic system operating at very short time scales (milliseconds or less). This dynamic behaviour can be understood as the combination of several modes of instability acting together. These modes can include fluid dynamic/shear layer instabilities, near-electrode instabilities resulting from steep local temperature gradients and other electrode surface effects, or helical/twisting instabilities resulting from the magnetic field generated in one part of the arc column exerting a force on another.Computational magneto-hydrodynamic models of the arc which are able to reproduce the highly transient behaviour of the system are developed to study certain dynamic modes – in particular, the formation and evolution of axisymmetric vortices and shear layer instabilities in the arc jet. Results from this work are then compared to qualitative data from high-speed photographic imaging of large plasma arcs (up to 3 kA current).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Minerals Engineering - Volume 63, August 2014, Pages 35–44
نویسندگان
,