کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
270899 504972 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical modeling and design of a disk-type rotating permanent magnet induction pump
ترجمه فارسی عنوان
مدلسازی عددی و طراحی یک پمپ القایی مغناطیسی دائم چرخشی دیسک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی


• The design and performance of a disk-type induction pump are described.
• A 3D numerical model based on an iterative coupling between EM and hydrodynamic solvers is developed.
• The model is verified by comparing with the experiments in a Pb-Bi loop facility.
• The suggestions are given to estimate the pump performance in a Pb-Li loop at high pressures.

Electromagnetic induction pumps with rotating permanent magnets appear to be the most promising devices to transport liquid metals in high-temperature applications. Here we present a numerical methodology to simulate the operation of one particular modification of these types of pumps: a disk-type induction pump. The numerical model allows for the calculation and analysis of the flow parameters, including the pressure–flow rate characteristics of the pump. The simulations are based on an iterative fully coupled scheme for electromagnetic and hydrodynamic solvers. The developed model is verified by comparing with experimental data obtained using a Pb-Bi loop test facility, for pressures up to 4 bar and flow rates up to 9 kg/s. The verified model is then expanded to higher pressures, beyond the limits of the experimental loop. Based on the numerical simulations, suggestions are given to extrapolate experimental data to higher (industrially important) pressure ranges. Using the numerical model and analytical estimation, the pump performance for the Pb-Li loop is also examined, and the ability of the designed pump to develop pressure heads over 6 bar and to provide flow rates over 15 kg/s is shown.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fusion Engineering and Design - Volume 106, May 2016, Pages 85–92
نویسندگان
, , , ,