کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
271126 504989 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Surface chemistry analysis of lithium conditioned NSTX graphite tiles correlated to plasma performance
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Surface chemistry analysis of lithium conditioned NSTX graphite tiles correlated to plasma performance
چکیده انگلیسی

Lithium wall conditioning in NSTX has resulted in reduced divertor recycling, improved energy confinement, and reduced frequency of edge-localized modes (ELMs), up to the point of complete ELM suppression. NSTX tiles were removed from the vessel following the 2008 campaign and subsequently analyzed using X-ray photoelectron spectroscopy as well as nuclear reaction ion beam analysis. In this paper we relate surface chemistry to deuterium retention/recycling, develop methods for cleaning of passivated NSTX tiles, and explore a method to effectively extract bound deuterium from lithiated graphite. Li–O–D and Li–C–D complexes characteristic of deuterium retention that form during NSTX operations are revealed by sputter cleaning and heating. Heating to ∼850 °C desorbed all deuterium complexes observed in the O 1s and C 1s photoelectron energy ranges. Tile locations within approximately ±2.5 cm of the lower vertical/horizontal divertor corner appear to have unused LiO bonds that are not saturated with deuterium, whereas locations immediately outboard of this region indicate high deuterium recycling. X-ray photo electron spectra of a specific NSTX tile with wide ranging lithium coverage indicate that a minimum lithium dose, 100–500 nm equivalent thickness, is required for effective deuterium retention. This threshold is suspected to be highly sensitive to surface morphology. The present analysis may explain why plasma discharges in NSTX continue to benefit from lithium coating thickness beyond the divertor deuterium ion implantation depth, which is nominally <10 nm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fusion Engineering and Design - Volume 88, Issue 12, December 2013, Pages 3157–3164
نویسندگان
, , , , , , , , , ,