کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
381998 660717 2016 20 صفحه PDF ندارد دانلود کنید
عنوان انگلیسی مقاله
A multi-agent conversational system with heterogeneous data sources access
ترجمه فارسی عنوان
یک سیستم مکالمه چندگانه با دسترسی به منابع داده ناهمگن
کلمات کلیدی
رابط های زبان طبیعی؛ دستیاران مجازی؛ عوامل محاوره تعبیه شده؛ سیستم های چندگانه؛ گرامرهای معنایی؛ هستی شناسی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We present a multi-agent conversational architecture for heterogeneous data sources.
• Expert agents are specialized in accessing different knowledge sources.
• Decision agents coordinate expert agents to provide a coherent final answer to users.
• This generic architecture is used to make a SmartSeller for a bookstore.
• A comparative analysis demonstrates several improvements regarding existing systems.

In many of the problems that can be found nowadays, information is scattered across different heterogeneous data sources. Most of the natural language interfaces just focus on a very specific part of the problem (e.g. an interface to a relational database, or an interface to an ontology). However, from the point of view of users, it does not matter where the information is stored, they just want to get the knowledge in an integrated, transparent, efficient, effective, and pleasant way. To solve this problem, this article proposes a generic multi-agent conversational architecture that follows the divide and conquer philosophy and considers two different types of agents. Expert agents are specialized in accessing different knowledge sources, and decision agents coordinate them to provide a coherent final answer to the user. This architecture has been used to design and implement SmartSeller, a specific system which includes a Virtual Assistant to answer general questions and a Bookseller to query a book database. A deep analysis regarding other relevant systems has demonstrated that our proposal provides several improvements at some key features presented along the paper.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 53, 1 July 2016, Pages 172–191
نویسندگان
, , ,