کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4421444 1308513 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Application of organic wastes on a benzo(a)pyrene polluted soil. Response of soil biochemical properties and role of Eisenia fetida
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Application of organic wastes on a benzo(a)pyrene polluted soil. Response of soil biochemical properties and role of Eisenia fetida
چکیده انگلیسی

In this paper we studied the bioremediation effects of a soil artificially contaminated by benzo(a)pyrene with and without two organic wastes (organic municipal solid waste, MSW, and poultry manure, PM) and with and without worms (Eisenia fetida) over 90 days. For the organic treatments, soil samples were mixed with MSW at a rate of 10% or PM at a rate of 7.6%, in order to apply the same amount of organic matter to the soil. An unamended and non-polluted soil was used as control. Cellulase and glutathione-S-transferase activities in worms and the earthworms’ weight were measured at four different incubation times (3, 15, 60 and 90 days). Cocoon numbers, average weight per cocoon and number of juveniles per cocoon were measured 30 days after the benzo(a)pyrene exposure. Extractable benzo(a)pyrene in soils and E. fetida was determined during the incubation period. To observe the effects of bioremediation of the contaminated soil, ATP, urease and phosphatase activities were measured. At the end of the incubation period and when compared with the polluted soil without worms and organic matter, the extractable benzo(a)pyrene decreased by 41.2% for the unamended polluted soil and without worms, by 45.8% for the organic-PM polluted soil and without worms, 48.3% for the organic-MSW polluted soil and without worms, 55.4% for the organic-PM polluted soil and with worms, and 66.3% for the organic-MSW polluted soil and with worms. This meant that worm hydrocarbon absorption was lowest in the contaminated soil amended with MSW and with worms, causing an increase in catabolic activity of the soil. These results suggested that the co-application of organic wastes and E. fetida for the bioremediation of benzo(a)pyrene polluted soil is potentially advantageous.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecotoxicology and Environmental Safety - Volume 74, Issue 4, May 2011, Pages 668–674
نویسندگان
, ,