کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4438047 1620337 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ambient exposure to coarse and fine particle emissions from building demolition
ترجمه فارسی عنوان
مواجهه محیطی برای انتشار ذرات درشت و ریز از تخریب ساختمان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
چکیده انگلیسی


• PM10, PM2.5 and PM1 concentrations from a building demolition are assessed.
• Physicochemical properties of particles using SEM and EDS are investigated.
• Average exposure doses increased by up to 57-times during the demolition activities.
• PM profiles showed a logarithmic decay with increasing distance from demolition site.
• Chemical analysis showed dominant concentrations of silicon and aluminium.

Demolition of buildings produce large quantities of particulate matter (PM) that could be inhaled by on-site workers and people living in the neighbourhood, but studies assessing ambient exposure at the real-world demolition sites are limited. We measured concentrations of PM10 (≤10 μm), PM2.5 (≤2.5 μm) and PM1 (≤1 μm) along with local meteorology for 54 working hours over the demolition period. The measurements were carried out at (i) a fixed-site in the downwind of demolished building, (ii) around the site during demolition operation through mobile monitoring, (iii) different distances away from the demolition site through sequential monitoring, and (iv) inside an excavator vehicle cabin and on-site temporary office for engineers. Position of the PM instrument was continuously recorded using a Global Positioning System on a second basis during mobile measurements. Fraction of coarse particles (PM2.5–10) contributed 89 (with mean particle mass concentration, PMC ≈ 133 ± 17 μg m−3), 83 (100 ± 29 μg m−3), and 70% (59 ± 12 μg m−3) of total PMC during the fixed-site, mobile monitoring and sequential measurements, respectively, compared with only 50% (mean 12 ± 6 μg m−3) during the background measurements. The corresponding values for fine particles (PM2.5) were 11, 17 and 30% compared with 50% during background, showing a much greater release of coarse particles during demolition. The openair package in R and map source software (ArcGIS) were used to assess spatial variation of PMCs in downwind and upwind of the demolition site. A modified box model was developed to determine the emission factors, which were 210, 73 and 24 μg m−2 s−1 for PM10, PM2.5 and PM1, respectively. The average respiratory deposited doses to coarse (and fine) particles inside the excavator cabin and on-site temporary office increased by 57- (and 5-) and 13- (and 2-) times compared with the local background level, respectively. The monitoring stations in downwind direction illustrated a logarithmic decrease of PM with distance. Energy-dispersive X-ray spectroscopy and scanning electron microscopy were used to assess physicochemical features of particles. The minerals such as silica were found as a marker of demolition dust and elements such as sulphur coming from construction machinery emissions. Findings of this study highlight a need to limit occupational exposure of individuals to coarse and fine particles by enforcing effective engineering controls.

Figure optionsDownload high-quality image (206 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 137, July 2016, Pages 62–79
نویسندگان
, ,