کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4473322 1315093 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
پیش نمایش صفحه اول مقاله
Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis
چکیده انگلیسی

Utilizing stable carbon isotope data to account for aceticlastic and non-aceticlastic pathways of methane generation, a model was created to describe laboratory batch anaerobic decomposition of cellulosic materials (office paper and cardboard). The total organic and inorganic carbon concentrations, methane production volume, and methane and CO2 partial pressure values were used for the model calibration and validation. According to the fluorescent in situ hybridization observations, three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H2/H2CO3 as well as acetate-oxidizing syntrophs, were considered. It was shown that temporary inhibition of aceticlastic methanogens by non-ionized volatile fatty acids or acidic pH was responsible for two-step methane production from office paper at 35 °C where during the first and second steps methane was generated mostly from H2/H2CO3 and acetate, respectively. Water saturated and unsaturated cases were tested. According to the model, at the intermediate moisture (150%), much lower methane production occurred because of full-time inhibition of aceticlastic methanogens. At the lowest moisture, methane production was very low because most likely hydrolysis was seriously inhibited. Simulations showed that during cardboard and office paper biodegradation at 55 °C, non-aceticlastic syntrophic oxidation by acetate-oxidizing syntrophs and hydrogenotrophic methanogens were the dominant methanogenic pathways.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Waste Management - Volume 29, Issue 6, June 2009, Pages 1828–1837
نویسندگان
, , , , , , ,