کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4480979 1623070 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ozonation of anilines: Kinetics, stoichiometry, product identification and elucidation of pathways
ترجمه فارسی عنوان
استحکام بیرونی: سینتیک، استوکیومتری، شناسایی محصول و توضیح مسیرها
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


• Anilines react fast with ozone.
• Complete compound transformation requires high stoichiometric ratios of ozone.
• Aniline reacts mainly via addition at the aromatic ring by forming hydroxyanilines.
• Radical chain reactions lead to consumption of ozone without aniline degradation.

Anilines as archetypes for aromatic amines, which play an important role in the production of, e.g., dyestuffs, plastics, pesticides or pharmaceuticals were investigated in their reaction with ozone. Due to their high reactivity towards ozone (1.2 × 105–2.4 × 106 M−1 s−1) the investigated aniline bearing different substituents are readily degraded in ozonation. However, around 4 to 5 molecules of ozone are needed to yield a successful transformation of aniline, most likely due to a chain reaction that decomposes ozone without compound degradation. This is inferred from OH radical scavenging experiments, in which compound transformation per ozone consumed is increased. Mechanistic considerations based on product formation indicate that addition to the aromatic ring is the preferential reaction in the case of aniline, p-chloroaniline and p-nitroaniline (high amounts of o-hydroxyaniline, p-hydroxyaniline, chloride, nitrite and nitrate, respectively were found). For aniline an addition to the nitrogen happens but to a small extent, since nitroso- and nitrobenzene were observed as well. In the case of N-methylaniline and N,N-dimethylaniline, an electron transfer reaction from nitrogen to ozone was proven due to the formation of formaldehyde. In contrast, for p-methylaniline and p-methoxyaniline the formation of formaldehyde may result from an electron transfer reaction at the aromatic ring. Additional oxidation pathways for all of the anilines under study are reactions of hydroxyl radicals formed in the electron transfer of ozone with the anilines (OH radical yields = 34–59%). These reactions may form aminyl radicals which in the case of aniline can terminate in bimolecular reactions with other compounds such as the determined o-hydroxyaniline by yielding the detected 2-amino-5-anilino-benzochinon-anil.

Figure optionsDownload high-quality image (147 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 98, 1 July 2016, Pages 147–159
نویسندگان
, , , , , , , , ,