کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4573172 1629459 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence
چکیده انگلیسی


• Differences in land use led to only minor differences in SOC and SON chemistry.
• A ~ 0.7 °C gradient in MAT led to only minor differences in SOC and SON chemistry.
• Within-profile dynamics had the greatest influence on SOC and SON chemistry.

As the largest actively cycling pool of terrestrial C, the response of soil organic matter (SOM) to climate change may greatly affect global C cycling and climate change feedbacks. Despite the influence of SOM chemistry—here defined as soil organic C (SOC) and soil organic N (SON) functional groups and compounds—on decomposition, uncertainty exists regarding the response of SOM chemistry to climate change and associated land use shifts. Here, we adopt a climosequence approach, using latitude along a uniform glacial till deposit at the grassland–forest ecotone in central Canada as a surrogate for the effects of climate change on SOM chemistry. Additionally, we evaluate differences in SOM chemistry from paired native grassland, native trembling aspen (Populus tremuloides) forest, and arable soil profiles to investigate the effects of likely climate-induced land use alterations.The combination of C and N K-edge X-ray absorption near edge structure (XANES) with pyrolysis-field ionization mass spectrometry (Py-FIMS) techniques was used to examine SOM chemistry at atomic and molecular scales, respectively. These techniques revealed only modest differences in surface SOM chemistry related to land use and latitude. Greater variation was apparent in the vertical stratification of SOM constituents from soil depth profiles. These findings indicate that pedon-scale processes have greater control over SOM chemistry than do processes operating on landscape (e.g. land use) and regional (e.g. climate) scales. Additionally they imply that SOM chemistry is largely unresponsive to climatic change on the magnitude of the mean annual temperature (MAT) gradient under study (~ 0.7 °C), despite its location at the grassland–forest boundary highlighting its sensitivity, and is similarly unresponsive to associated land use shifts.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geoderma - Volumes 253–254, September 2015, Pages 48–60
نویسندگان
, , , ,