کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4756758 1419158 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Production of inherently separated syngas streams via chemical looping methane cracking
ترجمه فارسی عنوان
تولید جریانهای همگن شده گسسته ذاتی از طریق ترک خوردگی متان حلقه شیمیایی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
چکیده انگلیسی


- Inherently separated syngas components are produced via “chemical looping cracking”.
- Ceria-supported Ni enables the catalytic cracking of methane at high temperatures.
- Ni effectively acts as a “carbon” carrier, rather than an “oxygen” carrier.
- Syngas production from methane with negative carbon footprint is proposed.

'Chemical Looping Combustion' (CLC) is an emerging clean combustion technology which offers an efficient route for fossil fuel combustion with inherent CO2 capture. Beyond combustion, chemical looping is also applicable to selective oxidation of fuels to synthesis gas or olefins. In all these applications, the main advantage of chemical looping lies in the inherent air separation, which allows conversion of the fuel without nitrogen dilution. In the present work, we extend this inherent separation principle to separation of the product stream by demonstrating the formation of fully separated syngas streams from methane, i.e. the production of separate, high-purity CO and H2 streams via (non-oxidative) methane cracking. CH4 is first cracked catalytically over Ni, producing gaseous H2 and solid carbon. The carrier is then periodically regenerated by burning off the carbon using CO2 as oxidant, thus enabling the reduction of CO2 to CO. Importantly, the Ni carrier is never oxidized during this cycle and hence acts as a “carbon carrier” rather than as an oxygen carrier as typical in chemical looping processes to-date. Autothermal process configurations are discussed, which allow reconciling the use of abundant natural gas reserves with the demand for clean, carbon-free energy production.

146

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Catalysis Today - Volume 298, 1 December 2017, Pages 21-32
نویسندگان
, , ,