کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4928243 1432020 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia
چکیده انگلیسی


- Performance evaluation of stand-alone hybrid RE system for a large resort in SCSM.
- This analysis is feasible for more than twelve islands surrounding Tioman Islands.
- The best HRES was made up of PV-wind-diesel-battery for the resort.
- The wind-diesel-battery system is more suitable for small islands other than Tioman.
- The optimized system has lower NPC ($), COE ($/kWh) and GHG emissions than diesel only system.

sThe tourist sectors in South China Sea, Malaysia (SCSM) completely depend on diesel generators for 24 h power supply. The emissions from diesel based power plants are environmentally risky for tourist spots. In this research article, a multi-optimal combination of stand-alone hybrid renewable energy system (HRES) for a large resort center located in SCSM has been proposed with detailed operational performance analysis. Hybrid Optimization Model for Electric Renewable (HOMER) software is used for economic and technical analysis of the system. The estimated peak and average load per day for the resort are 1185 kW and 13,048 kW respectively. The best optimized stand-alone hybrid energy system comprises of PV, wind, diesel generator, converter and battery. The optimized system resulted in net present cost (NPC) of $17.15 million, cost of energy (COE) of $0.279/kWh, renewable fraction (RF) of 41.6%, and CO2 of 2,571,131 kg/year. Whereas, the diesel only system takes NPC of $21.09 million, COE of $0.343/kWh and CO2 of 5,432,244 kg/year. The diesel only system has higher NPC, COE and CO2 emission than optimized HRES. The designed and analyzed HRES model might be applicable to any tourist locations and decentralized places in SCSM and around the world having similar climate conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Sustainable Cities and Society - Volume 28, January 2017, Pages 358-366
نویسندگان
, , ,