کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4949613 1440197 2017 7 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله
On minimum spanning tree-like metric spaces
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On minimum spanning tree-like metric spaces
چکیده انگلیسی

We attempt to shed new light on the notion of 'tree-like' metric spaces by focusing on an approach that does not use the four-point condition. Our key question is: Given metric space M on n points, when does a fully labelled positive-weighted tree T exist on the same n vertices that precisely realises M using its shortest path metric? We prove that if a spanning tree representation, T, of M exists, then it is isomorphic to the unique minimum spanning tree in the weighted complete graph associated with M, and we introduce a fourth-point condition that is necessary and sufficient to ensure the existence of T whenever each distance in M is unique. In other words, a finite median graph, in which each geodesic distance is distinct, is simply a tree. Provided that the tie-breaking assumption holds, the fourth-point condition serves as a criterion for measuring the goodness-of-fit of the minimum spanning tree to M, i.e., the spanning tree-likeness of M. It is also possible to evaluate the spanning path-likeness of M. These quantities can be measured in O(n4) and O(n3) time, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 226, 31 July 2017, Pages 51-57
نویسندگان
, ,