کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4959447 1364862 2018 11 صفحه PDF ندارد دانلود رایگان
عنوان انگلیسی مقاله
MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem
ترجمه فارسی عنوان
روش های MIP برای تخصیص اسکله یکپارچه و واگذاری جرثقیل اسکله و مسئله برنامه ریزی
کلمات کلیدی
تخصیص اسکله؛ برنامه ریزی جرثقیل اسکله؛ فرمولاسیون عدد صحیح مختلط؛ شاخه و برش؛ اکتشاف افق نورد ؛
Berth allocation; Quay crane scheduling; Mixed integer formulations; Branch and cut; Rolling horizon heuristic;
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

•New discretized formulations are introduced for each subproblem.•New valid inequalities are introduced.•A branch and cut algorithm using several enhancements is used to solve a set of real based instanced.•A rolling horizon matheuristic is introduced to solve hard instances.

In this paper we consider an integrated berth allocation and quay crane assignment and scheduling problem motivated by a real case where a heterogeneous set of cranes is considered. A first mathematical model based on the relative position formulation (RPF) for the berth allocation aspects is presented. Then, a new model is introduced to avoid the big-M constraints included in the RPF. This model results from a discretization of the time and space variables. For the new discretized model several enhancements, such as valid inequalities, are introduced. In order to derive good feasible solutions, a rolling horizon heuristic (RHH) is presented. A branch and cut approach that uses the enhanced discretized model and incorporates the upper bounds provided by the RHH solution is proposed. Computational tests are reported to show (i) the quality of the linear relaxation of the enhanced models; (ii) the effectiveness of the exact approach to solve to optimality a set of real instances; and (iii) the scalability of the RHH based on the enhanced mathematical model which is able to provide good feasible solutions for large size instances.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 264, Issue 1, 1 January 2018, Pages 138-148
نویسندگان
, ,