کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4964427 1447809 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
چکیده انگلیسی
In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k1|, while keeps additional main NCI modes well outside the range of physical interest with higher |k1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 214, May 2017, Pages 6-17
نویسندگان
, , , , , , , , , , , , ,