کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4969577 1365278 2018 11 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله
On automated source selection for transfer learning in convolutional neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
On automated source selection for transfer learning in convolutional neural networks
چکیده انگلیسی


- This study demonstrates that automatically ranking pre-trained source CNNs for a given target task, is possible.
- This study presents an information theoretic framework to rank source CNNs in an efficient, reliable, and zero-shot manner.
- This study presents a thorough experimental evaluation of the proposed theory using the Places-MIT database, CalTech-256 database, MNIST database and a real-world MRI database.

Transfer learning, or inductive transfer, refers to the transfer of knowledge from a source task to a target task. In the context of convolutional neural networks (CNNs), transfer learning can be implemented by transplanting the learned feature layers from one CNN (derived from the source task) to initialize another (for the target task). Previous research has shown that the choice of the source CNN impacts the performance of the target task. In the current literature, there is no principled way for selecting a source CNN for a given target task despite the increasing availability of pre-trained source CNNs. In this paper we investigate the possibility of automatically ranking source CNNs prior to utilizing them for a target task. In particular, we present an information theoretic framework to understand the source-target relationship and use this as a basis to derive an approach to automatically rank source CNNs in an efficient, zero-shot manner. The practical utility of the approach is thoroughly evaluated using the Places-MIT dataset, MNIST dataset and a real-world MRI database. Experimental results demonstrate the efficacy of the proposed ranking method for transfer learning.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 73, January 2018, Pages 65-75
نویسندگان
, , ,