کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4973476 1451641 2018 8 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله ISI
Training samples-optimizing based dictionary learning algorithm for MR sparse superresolution reconstruction
ترجمه فارسی عنوان
الگوریتم یادگیری فرهنگ لغت مبتنی بر بهینه سازی آموزشی برای بازسازی ابررساناهای مکرر MR
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI
فقط 3 هزار تومان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
تصویربرداری با وضوح بالا؛ تنوع فرهنگی بازسازی انعطاف پذیر؛ تصویربرداری رزونانس مغناطیسی؛
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


- The sparse reconstruction is improved for MR image super-resolution.
- The framework of sample-optimized dictionary training is proposed.
- The dictionary diversity is measured by Gray-consistency&Gradient jointed method.
- The optimal images are selected based on the complexity for dictionary training.

Magnetic Resonance (MR) imaging is widely used in diseases diagnosis. The hardware imaging arrives the limitation of resolution, and the high radiation intensity and time of magnetic hurts the human body. The software-based image super-resolution technology is prospective to solve the problem, especially with good excellent performance by sparse reconstruction-based image super-resolution. Dictionary generating is crucial issue of effecting the performance of the super-resolution algorithm, because of without considering the potential discriminative information during dictionary generating. For this problem, we propose the training samples-optimized dictionary learning algorithm for MR sparse super-resolution reconstruction. The gray-consistency & gradient joined diversity-based dictionary representation method is proposed to select the optimal images for the dictionary training. The dictionary training method is evaluated with the framework of sparse reconstruction-based MR imaging. Results show that the proposed dictionary selection framework is feasible and effective to improve the quality of sparse reconstruction-based MR super-resolution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 39, January 2018, Pages 177-184
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI
فقط 3 هزار تومان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت