کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4973641 1365496 2018 19 صفحه PDF ندارد دانلود رایگان
عنوان انگلیسی مقاله
A methodology for turn-taking capabilities enhancement in Spoken Dialogue Systems using Reinforcement Learning☆
کلمات کلیدی
Spoken Dialogue Systems; Turn-taking; Incremental dialogue; Reinforcement Learning;
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
A methodology for turn-taking capabilities enhancement in Spoken Dialogue Systems using Reinforcement Learning☆
چکیده انگلیسی

•We propose a new methodology to improve turn-taking capabilities in a Spoken Dialogue System using Reinforcement Learning.•We describe a new incremental Dialogue System Architecture and a new incremental dialogue simulator.•We train a Reinforcement Learning policy with the simulator.•We show that it outperforms the handcrafted and the non-incremental baseline strategies.•We validate these results in a live study with real users.

This article introduces a new methodology to enhance an existing traditional Spoken Dialogue System (SDS) with optimal turn-taking capabilities in order to increase dialogue efficiency. A new approach for transforming the traditional dialogue architecture into an incremental one at a low cost is presented: a new turn-taking decision module called the Scheduler is inserted between the Client and the Service. It is responsible for handling turn-taking decisions. Then, a User Simulator which is able to interact with the system using this new architecture has been implemented and used to train a new Reinforcement Learning turn-taking strategy. Compared to a non-incremental and a handcrafted incremental baselines, it is shown to perform better in simulation and in a real live experiment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Speech & Language - Volume 47, January 2018, Pages 93-111
نویسندگان
, , ,