کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
5010773 1462381 2018 11 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله ISI
SEA-FEM hybrid analysis for predicting Inter-floor impact noise
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
SEA-FEM hybrid analysis for predicting Inter-floor impact noise
چکیده انگلیسی

A hybrid method for predicting inter-floor impact noise in an apartment house is developed. Statistical Energy Analysis (SEA) is useful for predicting mid- to high-frequency noise by utilizing simple equivalent models of structures that have complex geometry and material properties. For low frequencies with concomitant low modal density, however, the error can be significant. Finite Element Method (FEM) is useful for predicting low frequency noise but entails complex modelling process and can be computation intensive. The inter-floor impact noise contains a significant low frequency component arising from floor vibration engendered by a person walking on the floor. The force of impact at 30-300 Hz frequency range excites the first and second bending modes of the floor and causes sound to radiate, and for the component of the sound less than 100 Hz, the SEA prediction error can be quite significant. In the present study, a modular hybrid method in which the floor structure is modelled using FEM and the vibration energy transmission through walls is modelled using SEA is proposed. The low frequency vibration of the floor due to impact is analyzed by modelling the floor as a clamped uniform plate while the propagation of vibratory energy to adjacent walls is analyzed by determining CLF and DLF values. The proposed SEA-FEM hybrid analysis method is capable of providing accurate estimation of the impact noise for low-, medium- and high-frequencies. Compared with a FEM−based method, the proposed method is found to yield results that are similar while reducing computation time by 70%.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Acoustics - Volume 129, 1 January 2018, Pages 397-407
نویسندگان
, , ,