کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
504868 864447 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization
ترجمه فارسی عنوان
سیستم تشخیص به کمک کامپیوتر مبتنی بر منطق فازی برای طبقه بندی سرطان پستان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• We develop a new method for categorizing findings in mammograms according to BIRADS.
• We use fuzzy logic to model a computer-aided diagnosis tool.
• We construct a fuzzy inference system.
• The system shows a degree of pertinence of a finding to each BIRADS category.
• The system achieved an accuracy of 76.7% for nodules and 83.3% for calcifications.

BackgroundFuzzy logic can help reduce the difficulties faced by computational systems to represent and simulate the reasoning and the style adopted by radiologists in the process of medical image analysis. The study described in this paper consists of a new method that applies fuzzy logic concepts to improve the representation of features related to image description in order to make it semantically more consistent. Specifically, we have developed a computer-aided diagnosis tool for automatic BI-RADS categorization of breast lesions. The user provides parameters such as contour, shape and density and the system gives a suggestion about the BI-RADS classification.MethodsInitially, values of malignancy were defined for each image descriptor, according to the BI-RADS standard. When analyzing contour, for example, our method considers the matching of features and linguistic variables. Next, we created the fuzzy inference system. The generation of membership functions was carried out by the Fuzzy Omega algorithm, which is based on the statistical analysis of the dataset. This algorithm maps the distribution of different classes in a set.ResultsImages were analyzed by a group of physicians and the resulting evaluations were submitted to the Fuzzy Omega algorithm. The results were compared, achieving an accuracy of 76.67% for nodules and 83.34% for calcifications.ConclusionsThe fit of definitions and linguistic rules to numerical models provided by our method can lead to a tighter connection between the specialist and the computer system, yielding more effective and reliable results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 64, 1 September 2015, Pages 334–346
نویسندگان
, ,