کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
504960 864455 2016 6 صفحه PDF ندارد دانلود رایگان
عنوان انگلیسی مقاله
Gray level co-occurrence and random forest algorithm-based gender determination with maxillary tooth plaster images
ترجمه فارسی عنوان
هم رخدادی سطح خاکستری و تعیین جنسیت مبتنی بر الگوریتم جنگل تصادفی با تصاویر گچ دندان فک بالا
کلمات کلیدی
تعیین جنسیت؛ استخراج ویژگی؛ پردازش تصویر؛ الگوریتم جنگل تصادفی
Gender determination; Feature extraction; Image processing; Random forest algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• In this study, GLCM and RF based gender determination has been performed.
• Maxillary tooth plaster model images have been used to determine gender.
• Automatic segmentation was carried out by using image processing methods.
• The features were extracted automatically without requiring any manual measurement.
• This study is a multi-disciplinary study.

Gender is one of the intrinsic properties of identity, with performance enhancement reducing the cluster when a search is performed. Teeth have durable and resistant structure, and as such are important sources of identification in disasters (accident, fire, etc.). In this study, gender determination is accomplished by maxillary tooth plaster models of 40 people (20 males and 20 females). The images of tooth plaster models are taken with a lighting mechanism set-up. A gray level co-occurrence matrix of the image with segmentation is formed and classified via a Random Forest (RF) algorithm by extracting pertinent features of the matrix. Automatic gender determination has a 90% success rate, with an applicable system to determine gender from maxillary tooth plaster images.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (184 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 73, 1 June 2016, Pages 102–107
نویسندگان
, , ,