کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
506896 865062 2016 8 صفحه PDF ندارد دانلود رایگان
عنوان انگلیسی مقاله
pSIN: A scalable, Parallel algorithm for Seismic INterferometry of large-N ambient-noise data
ترجمه فارسی عنوان
درد: مقیاس پذیر، الگوریتم موازی برای لرزه تداخل بزرگ N داده محیط سر و صدا
کلمات کلیدی
تداخل لرزه ای؛ محیط سر و صدا؛ الگوریتم موازی؛ پیام عبور رابط
Seismic interferometry; Ambient-noise; Parallel algorithm; Message-passing interface
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• A new parallel algorithm for seismic interferometry pSIN is developed.
• pSIN requires reading noise data only once and disk I/O overhead is minimized.
• Experiments using a real dataset shows close to ideal scalability of pSIN.

Seismic interferometry is a technique for extracting deterministic signals (i.e., ambient-noise Green's functions) from recordings of ambient-noise wavefields through cross-correlation and other related signal processing techniques. The extracted ambient-noise Green's functions can be used in ambient-noise tomography for constructing seismic structure models of the Earth's interior. The amount of calculations involved in the seismic interferometry procedure can be significant, especially for ambient-noise datasets collected by large seismic sensor arrays (i.e., “large-N” data). We present an efficient parallel algorithm, named pSIN (Parallel Seismic INterferometry), for solving seismic interferometry problems on conventional distributed-memory computer clusters. The design of the algorithm is based on a two-dimensional partition of the ambient-noise data recorded by a seismic sensor array. We pay special attention to the balance of the computational load, inter-process communication overhead and memory usage across all MPI processes and we minimize the total number of I/O operations. We have tested the algorithm using a real ambient-noise dataset and obtained a significant amount of savings in processing time. Scaling tests have shown excellent strong scalability from 80 cores to over 2000 cores.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 93, August 2016, Pages 88–95
نویسندگان
, , , , , , , , ,