کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
521576 867776 2009 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Preconditioning methods for discontinuous Galerkin solutions of the Navier–Stokes equations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Preconditioning methods for discontinuous Galerkin solutions of the Navier–Stokes equations
چکیده انگلیسی

A Newton–Krylov method is developed for the solution of the steady compressible Navier–Stokes equations using a discontinuous Galerkin (DG) discretization on unstructured meshes. Steady-state solutions are obtained using a Newton–Krylov approach where the linear system at each iteration is solved using a restarted GMRES algorithm. Several different preconditioners are examined to achieve fast convergence of the GMRES algorithm. An element Line-Jacobi preconditioner is presented which solves a block-tridiagonal system along lines of maximum coupling in the flow. An incomplete block-LU factorization (Block-ILU(0)) is also presented as a preconditioner, where the factorization is performed using a reordering of elements based upon the lines of maximum coupling. This reordering is shown to be superior to standard reordering techniques (Nested Dissection, One-way Dissection, Quotient Minimum Degree, Reverse Cuthill–Mckee) especially for viscous test cases. The Block-ILU(0) factorization is performed in-place and an algorithm is presented for the application of the linearization which reduces both the memory and CPU time over the traditional dual matrix storage format. Additionally, a linear p-multigrid preconditioner is also considered, where Block-Jacobi, Line-Jacobi and Block-ILU(0) are used as smoothers. The linear multigrid preconditioner is shown to significantly improve convergence in term of number of iterations and CPU time compared to a single-level Block-Jacobi or Line-Jacobi preconditioner. Similarly the linear multigrid preconditioner with Block-ILU smoothing is shown to reduce the number of linear iterations to achieve convergence over a single-level Block-ILU(0) preconditioner, though no appreciable improvement in CPU time is shown.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 228, Issue 11, 20 June 2009, Pages 3917–3935
نویسندگان
, ,