کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5510409 1538987 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Seasonality and toxins effects on oxidative/nitrosative metabolism in digestive glands of the bivalve Mytilus edulis platensis
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Seasonality and toxins effects on oxidative/nitrosative metabolism in digestive glands of the bivalve Mytilus edulis platensis
چکیده انگلیسی
The hypothesis presented here is that oxidative and/or nitrosative metabolism in the bivalve Mytilus edulis platensis is altered by the presence of planktonic toxins. Digestive glands (DG) were isolated from specimens collected in the Argentinean Sea during summer, winter and spring (in the presence of harmful planktonic toxins). The labile iron pool content was not significantly different in DG from animals collected in summer and winter, but was 2.3-fold increased in samples from spring compared to summer collected mollusks. The 2′,7′ dichlorofluorescein diacetate (DCFH-DA) oxidation, ascorbyl radical/ascorbate and lipid radical/α-tocopherol content ratios showed no significant differences between samples collected in winter and summer. However, spring collected samples showed significantly higher DCFH-DA oxidation rate and oxidative ratios in comparison to DG from mollusks collected in summer. Superoxide dismutase activity decreased by 75% in winter, and 93% in spring, compared to samples collected in summer. Glutathione S-transferase activity decreased by 89% in winter, and 30% in spring, compared to samples collected in summer. Catalase activity in winter animals increased by 3.8-fold in comparison to summer values, with no differences between spring and summer collected mollusks. Nitrite plus nitrate content was not significantly different among samples collected in the three seasons, but nitric oxide content was 8.5- and 2.7-fold higher in samples from winter and spring collected mollusks than values obtained in summer, respectively. These results showed the lack of effects of climatic changes on the integrative oxidative indexes; however, under exposure to toxins, both oxidative and nitrosative metabolisms were affected.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology - Volume 200, October 2016, Pages 79-86
نویسندگان
, ,