کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5746775 1618786 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estrogen-mediated protection of the organotin-degrading strain Metarhizium robertsii against oxidative stress promoted by monobutyltin
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Estrogen-mediated protection of the organotin-degrading strain Metarhizium robertsii against oxidative stress promoted by monobutyltin
چکیده انگلیسی


- Cytochrome P450 enzymes participate in the biotransformation of DBT and estrogens.
- MBT (not DBT) induces the formation of O2-, H2O2, and NO in M. robertsii mycelium.
- SOD and CAT of the fungal cells are not involved in ROS detoxification.
- E1 and E2 are efficient scavengers of nitrogen and oxygen reactive species.

Dibutyltin (DBT) is a global pollutant characterized by pro-oxidative properties. The fungal strain Metarhizium robertsii can eliminate high levels of DBT efficiently. In this study, induction of oxidative stress as well as its alleviation through the application of natural estrogens during the elimination of DBT by M. robertsii were evaluated. During the first 24 h of incubation, the initial concentration of DBT (20 mg l−1) was reduced to 3.1 mg l−1, with simultaneous formation of a major byproduct - monobutyltin (MBT). In the presence of estrone (E1) or 17β-estradiol (E2), the amounts of dibutyltin residues in the fungal cultures were found to be approximately 2-fold higher compared to cultures without estrogens, which was associated with the simultaneous utilization of the compounds by cytochrome P450 enzymes. On the other hand, MBT levels were approximately 2.5 times lower in the fungal cultures with the addition of one of the estrogens. MBT (not DBT) promotes the generation of O2-, H2O2, and NO at levels 65.89 ± 18.08, 4.04 ± 3.62, and 27.92 ± 1.95, respectively. Superoxide dismutase and catalase activities did not show any response of the M. robertsii strain against the overproduction of superoxide anion and hydrogen peroxide. Application of E1 as well as E2 ensured non-enzymatic defense against nitrosative and oxidative stress through scavenging of nitrogen and oxygen reactive species, and limited their levels from 1.5-fold to 21-fold, depending on the used estrogen.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 185, October 2017, Pages 96-104
نویسندگان
, , ,