کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5746889 1618789 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming Sphingobium chinhatense strain IP26
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming Sphingobium chinhatense strain IP26
چکیده انگلیسی
Bacterial evolution has resulted in the appearance of several Sphingomonadacea strains that gained the ability to metabolize hexachlorocyclohexanes (HCHs). HCHs have been widely used as pesticides but were banned under the Stockholm Convention on persistent organic pollutants (POPs) in 2009. Here we present evidence for bacterial transformation reactions of hexabromocyclododecanes (HBCDs), which are structurally related to HCHs. HBCDs were used as flame retardants. They are now also considered as POPs and their production and use is restricted since 2013. Racemic α-, β-, and γ-HBCDs and their mixture were exposed to Sphingobium chinhatense IP26 in resting cell assays in parallel to β-HCH. All HBCD stereoisomers were converted with (−)β-HBCD being the best and both α-HBCD enantiomers the poorest substrates. HBCD conversion rates were 27-430 times slower than that of β-HCH. Three generations of hydroxylated transformation products were observed, 7 pentabromocyclododecanol isomers (PeBCD-ols), 11 tetrabromocyclododecadiols (TeBCD-diols) and 3 tribromocyclododecatriols (TrBCD-triols). The conversion of (+)α-, (−)β- and (−)γ-HBCD was faster than those of their enantiomers. Therefore the respective enantiomeric excess increased to 3 ± 1%, 36 ± 1% and 6 ± 2% during 48 h of bacterial exposure. PeBCD-ols appeared first, followed by TeBCD-diols and TrBCD-triols indicating stepwise hydrolytic dehalogenation reactions. In conclusion, severe HCH pollution at geographically distinct dumpsites triggered bacterial evolution to express enzymes transforming such compounds. We used S. chinhatense IP26 bacteria to transform structurally related HBCDs, also regulated under the Stockholm Convention. Such bacteria might be useful for bioremediation but the toxicity of the numerous transformation products observed must be assessed in advance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 182, September 2017, Pages 491-500
نویسندگان
, , , , ,