کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5750446 1619697 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Source apportionment of PM10 and PM2.5 in major urban Greek agglomerations using a hybrid source-receptor modeling process
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Source apportionment of PM10 and PM2.5 in major urban Greek agglomerations using a hybrid source-receptor modeling process
چکیده انگلیسی


- A hybrid source-receptor modeling process was assembled for SA of PM in Greece.
- Dust resuspension was found to be a major source of PM.
- Contributions from biomass burns corresponded to the shift in the energy mix.
- Short-range transport was evidenced for traffic emissions and resuspended dust.
- Secondary aerosols were estimated to have a travel distance over 1000 km.

A hybrid source-receptor modeling process was assembled, to apportion and infer source locations of PM10 and PM2.5 in three heavily-impacted urban areas of Greece, during the warm period of 2011, and the cold period of 2012. The assembled process involved application of an advanced computational procedure, the so-called Robotic Chemical Mass Balance (RCMB) model. Source locations were inferred using two well-established probability functions: (a) the Conditional Probability Function (CPF), to correlate the output of RCMB with local wind directional data, and (b) the Potential Source Contribution Function (PSCF), to correlate the output of RCMB with 72 h air-mass back-trajectories, arriving at the receptor sites, during sampling. Regarding CPF, a higher-level conditional probability function was defined as well, from the common locus of CPF sectors derived for neighboring receptor sites. With respect to PSCF, a non-parametric bootstrapping method was applied to discriminate the statistically significant values. RCMB modeling showed that resuspended dust is actually one of the main barriers for attaining the European Union (EU) limit values in Mediterranean urban agglomerations, where the drier climate favors build-up. The shift in the energy mix of Greece (caused by the economic recession) was also evidenced, since biomass burning was found to contribute more significantly to the sampling sites belonging to the coldest climatic zone, particularly during the cold period. The CPF analysis showed that short-range transport of anthropogenic emissions from urban traffic to urban background sites was very likely to have occurred, within all the examined urban agglomerations. The PSCF analysis confirmed that long-range transport of primary and/or secondary aerosols may indeed be possible, even from distances over 1000 km away from study areas.

591

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volumes 601–602, 1 December 2017, Pages 906-917
نویسندگان
, , , , , ,