کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5751021 1619704 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology
ترجمه فارسی عنوان
ارزیابی تأثیر غلظت بخار آمونیوم بنزن بر آب محصول از آب شیمیایی آب از فن آوری هوا
کلمات کلیدی
ژنراتور آب جو کیفیت هوا، کیفیت آب، ترکیبات آلی فرار، تصفیه آب، بنزن،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
چکیده انگلیسی


- Potential for air contaminants to enter drinking water and impact human health
- Environmental chamber tests compared benzene concentrations in air and product water
- Temperature and air quality influence the product water quality of CWFA technology
- Poor air quality may result in product water not meeting drinking water standards.

Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5 μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures.

88

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volumes 590–591, 15 July 2017, Pages 60-68
نویسندگان
, , , , ,