کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5781925 1637139 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sedimentary control on the formation of a multi-superimposed gas system in the development of key layers in the sequence framework
ترجمه فارسی عنوان
کنترل رسوبی در شکل گیری یک سیستم گاز چندپارچه در توسعه لایه های کلیدی در چارچوب توالی
کلمات کلیدی
لایه های کلیدی، سیستم گاز چند سوپاپ، کنترل بذر، سطح سیلاب دریایی، بلوک اتصال
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی اقتصادی
چکیده انگلیسی
Based on core observations, well logs and test results of siderite-bearing mudstone from the Benxi Formation to the Member 2 of the Shanxi Formations in the Linxing block, northeastern Ordos Basin, a logging identification model for siderite-bearing mudstone (key layer) was established. The porosity characteristics and sealing property were quantitatively evaluated by logging data. Sedimentary control on the formation of multi-superimposed gas-bearing system in the development of key layers in the sequence framework was also discussed. The results showed that the siderite-bearing mudstone has obvious logging response characteristics, e.g., high photoelectric absorption cross-section index (PE), high density (DEN), high amplitude natural gamma ray (GR), low acoustic (AC), low resistivity (M2RX) and low neutron porosity (CNCF). The quantitatively evaluated results of the porosity characteristics and sealing property for the key layer showed that the key layer has the characteristics of low porosity (with an average of 1.20 percent), low permeability (with an average of 2.29 × 10−8μm2), and high breakthrough pressure (with an average of 12.32 MPa) in the study area. This layer acts as an impermeable gas barrier in a multi-superimposed gas system. The results also indicated that the material composition of the multi-superimposed gas-bearing system can be established by the sequence stratigraphic framework. The sedimentary evolution results in a cyclic rhythm of material composition vertically. The spatial distribution of the corresponding transgressive event layer near the maximum flooding surface (MFS) in the sequence framework restricts the spatial distribution of the key layer with high breakthrough pressure and low porosity, which constitutes the gas-bearing system boundary. The siderite-bearing mudstone formed near the MFS in the second-order sequence and constitutes a stable comparison of the first-order gas-bearing system boundary, which has a wide range of regional distribution and stable thickness. The siderite-bearing mudstone formed near the MFS in the third-order sequence is often incompletely preserved due to the late (underwater) diversion channel erosion and cutting. This layer forms the coal-bearing reservoirs, which we termed as a second-order gas-bearing system in adjacent third-order sequences to form a uniform gas-bearing system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Marine and Petroleum Geology - Volume 88, December 2017, Pages 268-281
نویسندگان
, , , , , , , , , ,