کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5783289 1637948 2017 54 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Revisiting Mn and Fe removal in humic rich estuaries
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Revisiting Mn and Fe removal in humic rich estuaries
چکیده انگلیسی
Metal removal by estuarine mixing has been studied for several decades, but few studies emphasize dissolved metal speciation and organic ligand complexation. Findings from the last decade indicate that metal-humic complexation can be significant for dissolved metals including Cu(II), Al(III) and Fe(III), but little consideration is given to the precipitation of these complexes with humic material at pH < 2. Given that total soluble metal analysis involves an acidification step for sample preservation, we show that Mn and other metal concentrations may have been underestimated in estuaries, especially when humic substance concentrations are high. A competitive ligand assay of selected samples from our study site, a coastal waterway bordered by wetlands (Broadkill River, DE), showed that Mn(III)-humic complexation is significant, and that some Mn(III)-L complexes precipitate during acidification. In the oxygenated surface waters of the Broadkill River, total dissolved Mn (dMnT) was up to 100% complexed to ambient ligands as Mn(III)-L, and we present evidence for humic-type Mn(III)-L complexes. The Mn(III) complexes were kinetically stabilized against Fe(II) reduction, even when [Fe(II)] was 17 times higher than [dMnT]. Unlike typical oceanic surface waters, [Fe(II)] > [Fe(III)-L] in surface waters, which may be attributed to high rates of photoreduction of Fe(III)-L complexes. Total [Mn(III)-L] ranged from 0.22 to 8.4 μM, in excess of solid MnOx (below 0.28 μM in all samples). Filtration of samples through 0.02 μm filters indicated that all Mn(III)-L complexes pass through the filters and were not colloidal species in contrast to dissolved Fe. Incubation experiments indicated that the reductive dissolution of solid MnOx by ambient ligands may be responsible for Mn(III) formation in this system. Unlike previous studies of estuarine mixing, which demonstrated metal removal during mixing, we show significant export of dMn and dissolved Fe (dFe) in the summer and fall of 2015. Thus, we propose that estuarine removal should be considered seasonal for dMn and dFe, with export in the summer and fall and removal during the winter.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 209, 15 July 2017, Pages 267-283
نویسندگان
, , , ,