کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
606943 1454559 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor
چکیده انگلیسی


• Fe3O4 NPs were synthesized by simple method using steel pickling waste liquor.
• Roundly compare characterization study with the Fe3O4 NPs prepared by the well-known method was conducted.
• Bisphenol A can be effectively eliminated in US + Fe3O4 + H2O2 system in neutral pH.
• Fe3O4 NPs prepared from waste liquor performed similar good activity and stability with that prepared by reagent.

In this study, Fe3O4 NPs (named as Fe3O4 NPs-PO) were prepared by steel pickling waste liquor to reduce the cost of preparation, and were compared with those obtained by the common co-precipitation method (named as Fe3O4 NPs-CP) which prepared from chemical reagent using BET, XRD, XPS, TEM and SEM techniques. The results indicated that Fe3O4 NPs-PO nanoparticles mainly existed in the form of Fe3O4 and appeared to be roughly spherical in shape with a size range of 20–50 nm. The heterogeneous Fenton-like catalytic capacity of Fe3O4 NPs-PO in US + Fe3O4 + H2O2 system was comprehensively investigated. BPA could be degraded within a wide pH range of 7–10. The removal efficiencies of BPA were close to 100% and about 45% total organic carbon (TOC) in solution was eliminated at the optimized conditions. It was found that·OH radicals which mainly caused the degradation of BPA were promptly generated due to the catalysis of the Fe3O4 NPs-PO. Furthermore, the comparative study of catalytic activity, stability and reusability between Fe3O4 NPs-PO and Fe3O4 NPs-CP showed that the two catalysts both remained good activity after several reaction cycles and no significant change in composition and structure was observed, the loss of catalyst was negligible, which demonstrated that Fe3O4 NPs-PO were promising in ultrasonic Fenton-like process to treat refractory organics.

Figure optionsDownload high-quality image (50 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 436, 15 December 2014, Pages 258–266
نویسندگان
, , , ,