کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
607885 1454597 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal
چکیده انگلیسی

Magnesium oxide (MgO) has been known as an excellent adsorbent for a variety of the environmentally polluted compounds. This work describes a synthesis of nanostructured MgO particles via a facile procedure by using cetyltrimethylammonium bromide (CTAB). Powder X-ray diffraction, thermal gravimetric, and differential thermal gravimetry (TGA/DTG) analyses were performed to characterize the physical properties of synthesized MgO particles and field emission-scanning electron microscopy (FE-SEM) was used to observe their morphology, whereas nitrogen adsorption–desorption isotherms and Brunauer–Emmett–Teller (BET) method were used to calculate the total surface areas of the samples. The adsorptive performance was studied by batch experiments for reactive blue (RB) 19 dye removal. The results showed that as-prepared MgO particles revealed hexagonal-like shaped platelets with an average diameter in the range of 49–91 nm and a mean thickness of 19–25 nm; meanwhile, MgO CTAB-free particles are aggregated, tiny nanoparticles with an average width of 22 nm and an average length of 77 nm. The maximum adsorption capacity of as-prepared nanostructured MgO for reactive blue (RB) 19 dye was 250 mg g−1. Furthermore, the correlation between structural characterization (mean size, pore, surface) of the samples and the adsorption performance was also discussed in details.

Figure optionsDownload high-quality image (89 K)Download as PowerPoint slideHighlights
► A facile synthesis of MgO nanoplates using cetyltrimethylammonium bromide was presented.
► Mechanism for the formation of nanostructured MgO particles was proposed.
► MgO nanoplates revealed high BET surface areas.
► MgO nanoplates exhibited a highly adsorptive performance for removal of reactive blue 19 dye.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 398, 15 May 2013, Pages 210–216
نویسندگان
, , , ,