کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6427152 1634703 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Atmospheric constituents and surface-level UVB: Implications for a paleoaltimetry proxy and attempts to reconstruct UV exposure during volcanic episodes
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Atmospheric constituents and surface-level UVB: Implications for a paleoaltimetry proxy and attempts to reconstruct UV exposure during volcanic episodes
چکیده انگلیسی


- UVB irradiance may be highly variable under volcanic conditions.
- Paleoaltitude proxy based on UVB exposure must consider atmospheric conditions.
- Connecting UVB to mass extinctions may require modeling volcanic constituents.

Chemical and morphological features of spores and pollens have been linked to changes in solar ultraviolet radiation (specifically UVB, 280-315 nm) at Earth's surface. Variation in UVB exposure as inferred from these features has been suggested as a proxy for paleoaltitude; such proxies are important in understanding the uplift history of high altitude plateaus, which in turn is important for testing models of the tectonic processes responsible for such uplift. While UVB irradiance does increase with altitude above sea level, a number of other factors affect the irradiance at any given place and time. In this modeling study we use the TUV atmospheric radiative transfer model to investigate dependence of surface-level UVB irradiance and relative biological impact on a number of constituents in Earth's atmosphere that are variable over long and short time periods. We consider changes in O3 column density, and SO2 and sulfate aerosols due to periods of volcanic activity, including that associated with the formation of the Siberian Traps. We find that UVB irradiance may be highly variable under volcanic conditions and variations in several of these atmospheric constituents can easily mimic or overwhelm changes in UVB irradiance due to changes in altitude. On the other hand, we find that relative change with altitude is not very sensitive to different sets of atmospheric conditions. Any paleoaltitude proxy based on UVB exposure requires confidence that the samples under comparison were located at roughly the same latitude, under very similar O3 and SO2 columns, with similar atmospheric aerosol conditions. In general, accurate estimates of the surface-level UVB exposure at any time and location require detailed radiative transfer modeling taking into account a number of atmospheric factors; this result is important for paleoaltitude proxies as well as attempts to reconstruct the UV environment through geologic time and to tie extinctions, such as the end-Permian mass extinction, to UVB irradiance changes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 453, 1 November 2016, Pages 141-151
نویسندگان
, , ,