کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6428128 1634730 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In situ study of the fractionation of hydrogen isotopes between aluminosilicate melts and coexisting aqueous fluids at high pressure and high temperature - Implications for the δD in magmatic processes
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
In situ study of the fractionation of hydrogen isotopes between aluminosilicate melts and coexisting aqueous fluids at high pressure and high temperature - Implications for the δD in magmatic processes
چکیده انگلیسی


- We measure αmelt-fluid at high P-T via Raman spectroscopy in hydrothermal anvil cell.
- D/H ratios of fluids vary minimally with temperature.
- D/H ratios of melts show strong temperature dependence.
- αmelt-fluid is independent of bulk D/H ratios (0.05-2.67) of the melt + fluid system.
- Hydrogen isotope fractionation affects the δD values of arc melt inclusions.

The hydrogen isotopic composition of melt inclusions trapped in phenocrysts during their crystallization and growth in a magma may contribute to a better understanding of the water cycle between the atmosphere, the hydrosphere and the lithosphere. Such understanding relies on the knowledge of the hydrogen isotopic fractionation factors between aqueous fluids, silicate melts, and minerals at temperature and pressure conditions relevant to the Earth's interior. Significant D/H fractionation between silicate melts and aqueous fluids was reported at hundreds of MPa and °C by using in situ measurements in hydrothermal diamond anvil cell (HDAC) experiments (Mysen, 2013a, 2013b, Am. Mineral. 98, 376-386 and 1754-1764). However, the available dataset is focused on fluids and melts with D/H ratios close to unity. The relevance of such data for natural processes that involve per mil variations of δD-values may not always be clear. To address such concerns, the effect of the bulk D/H ratio on hydrogen isotope partitioning between water-saturated silicate melts and coexisting silicate-saturated aqueous fluids has been determined in the Na2O-Al2O3-SiO2-H2O-D2O system. To this end, in situ Raman spectroscopic measurements were performed on fluids and melts with bulk D/H ratios from 0.05 to 2.67 by using an externally-heated diamond anvil cell in the 300-800 °C and 200-1500 MPa temperature and pressure range, respectively.In these pressure/temperature ranges, the D/H ratios of fluids in equilibrium with melt barely change with temperature (in average ΔHfluid=0.47±1.15kJ/mol). In contrast, the D/H ratios of coexisting melts display strong dependence on temperature (average ΔHmelt=7.18±1.27kJ/mol). The temperature-dependence of the D/H fractionation factor between melt and fluid (αfluid-melt=D/Hfluid/D/Hmelt) is comparable in all the experiments and can be written: 1000⋅ln⁡(αfluid-melt)=263(±26)⋅T−2-126(±48). Therefore, the αfluid-melt is independent of the bulk D/H ratio of the melt + fluid system.Experimentally determined αfluid-melt using D-enriched fluids, therefore, can be applied to natural systems. It follows that for water-saturated magma strong isotopic fractionation of D and H between water dissolved in magmas and deep aqueous fluids may occur. The δD-values in melt inclusions in phenocrysts in such water-saturated magma will reflect such fluid/melt fractionation effects. A likely result is underestimation of the δD isotopic composition of slab fluids based on δD-values in melt inclusions. The temperature-dependent hydrogen isotope fractionation must be taken into account in the modeling of slab fluid-magma interaction in the mantle wedge.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 426, 15 September 2015, Pages 158-166
نویسندگان
, , ,