کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6467455 1423254 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enzymatic reactive crystallization for improving ampicillin synthesis
ترجمه فارسی عنوان
کریستالیزاسیون واکنش آنزیمی برای بهبود سنتز آمپی سیلین
کلمات کلیدی
کریستالیزاسیون واکنشی، مدل جنبشی، آمپی سیلین، پنیسیلین گ آیلاز،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


- Reactive crystallization can be employed to increase the selectivity of ampicillin.
- New pH-sensitive model predicts concentrations for non-pH-stat batch reactions.
- Experiments confirm model predictions of better selectivity towards ampicillin.
- Using Assemblase® selectivity is increased 50% by parallel reaction/crystallization.
- Yield is improved 20% over the theoretical maximum not considering crystallization.

The enzyme penicillin G acylase (PGA) catalyzes the condensation of phenylglycine methyl ester (PGME) with 6-aminopenicillanic acid (6-APA) to form ampicillin. We improved the selectivity of ampicillin synthesis with PGA by running simultaneous reaction and crystallization. However, the enzyme also catalyzes two undesirable side reactions: the hydrolysis of PGME to phenylglycine and the hydrolysis of ampicillin to phenylglycine and 6-APA. We demonstrate that a fifty percent improvement in selectivity for ampicillin over phenylglycine is achieved by combining reaction and crystallization in batch at pH value of 6 with saturated 6-APA and equimolar PGME. The enhancement in selectivity is mainly attributed to the decreased rates of enzymatic ampicillin hydrolysis; however, the course of the pH value during the reaction also has an effect on enzyme activity that improved selectivity. In addition to showing experimental results, we developed a new kinetic process model that predicts the observed improvement. The new model accounts for the solubility limits of different species as functions of pH value as well as the large change in pH value at high conversion. Previous work does not account for changes in activity with conversion. The pH-dependent activity for the specific enzyme used in this system, Assemblase® from DSM-Sinochem, is well-realized by the model and generalization to other PGAs is possible within the model framework; the selectivity parameters α, β0, and γ for Assemblase® are compared to PGA from E. coli as evidence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Science - Volume 165, 29 June 2017, Pages 81-88
نویسندگان
, , ,