کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6478698 1428100 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale
چکیده انگلیسی


- First large scale experience (MW) of biomass combustion at CLC-relevant conditions.
- Manganese and ilmenite were applied successfully at semi-industrial scale.
- 60% combustion under challenging conditions: 830 °C, over-bed fuel feeding.
- Volatiles conversion limited by mixing to a significant extent.

This paper presents an overview of the experience gained from operating a dual fluidized bed system with oxygen carriers and biomass for more than 1000 h. The tests were carried out in the Chalmers boiler/gasifier loop (with inputs of 12 MWth and 2-4 MWth, respectively), which is 2-4 orders of magnitude larger than most existing CLC units. Coarse biomass particles (i.e., commercial wood pellets) were fed as fuel onto the surface of a mild fluidized bed. This limits significantly the contacts between the volatiles and the oxygen carrier particles, as the flotsam fuel tends to remain on the surface of the bed while the volatiles are released. The oxygen carrier materials tested were ilmenite and a manganese ore. The influences on biomass conversion of fluidization velocity, fuel feeding rate, and circulation rate of the bed material were investigated. Both bed materials efficiently transported oxygen between the reactors, achieving up to 60% combustion of the gases released in the reactor at a relatively low temperature, i.e., 830 °C. The ilmenite outperformed the manganese ore under the conditions investigated. With oxygen carriers, the yield of hydrocarbons heavier than benzene was in the range of 10-11 g/N m3, which was 70% (w/w) lower than that obtained in a reference case with silica-sand as the bed material. The conversion of volatile species to CO2 was limited by gas-solids mixing, which could be enhanced by altering the fluidization velocity. The circulation rate of the bed material and the fuel feeding rate were found to have important influences on the rate of char gasification. Given the relatively low operating temperature and the simple reactor design, relatively high conversion of biomass by the oxygen carriers was achieved. There is scope for further optimization of the operating conditions, to achieve higher conversion levels, which would enable the implementation of CLC of biomass on a large scale.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 190, 15 March 2017, Pages 1174-1183
نویسندگان
, , , ,