کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
651095 1457397 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An experimental study on the cavitation of water with effects of SiO2 nanoparticles
ترجمه فارسی عنوان
یک مطالعه تجربی بر روی کاویتاسیون آب با اثر نانوذرات SiO2
کلمات کلیدی
روش آکوستیک؛ فشار حفره؛ ناخالصی؛ نانوسیال؛ نانوذرات SiO2
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
چکیده انگلیسی


• The effects of SiO2 nanoparticles on cavitation inception are investigated experimentally.
• SiO2 nanoparticles always result in a reduction of cavitation pressure.
• Increasing particle size, the cavitation pressure has no measurable difference.

Cavitation pressure is a measure of liquid tensile strength, which determines the cavitation inception in hydrodynamics. The previously measured pressure is known to be significantly different because of the presence of solid impurities serving as nucleation sites. A recent study reported that water can be stabilized with solid impurities such as SiO2 nanoparticles. These nanoparticles are supposed to form stabilized hydrogen bonds with water. In the present paper, the effects of SiO2 nanoparticles on cavitation inception are investigated experimentally through acoustic method at 1 atm and temperatures from 0 °C to 80 °C. With diameters of 20, 50 and 100 nm, SiO2 particles are dispersed into degassed water. The dimensionless free energy of critical bubble is also calculated. Both the cavitation pressure and the free energy of critical bubble of water with SiO2 decrease when compared with those of ultrapure water. The increase of particle concentration further decrease the cavitation pressure and the free energy of critical bubble. Increasing particle size, the cavitation pressure has no measurable difference. Results show that SiO2 nanoparticles are destabilizing impurities, which always promote the cavitation inception of water within current experimental conditions.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Thermal and Fluid Science - Volume 79, December 2016, Pages 195–201
نویسندگان
, , ,