کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6632544 1424951 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Premixed combustion of low-concentration coal mine methane with water vapor addition in a two-section porous media burner
ترجمه فارسی عنوان
احتراق پیش ماده مخلوط متان معدنی با غلظت پایین با افزودن بخار آب در دو فاز رسانه متخلخل
کلمات کلیدی
معدن زغال سنگ معدن، فوم سرامیکی، بخار آب، حد ثبات شعله
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی
During the transport of low-concentration coal mine methane (CMM), water mist spraying into the pipeline is used to eliminate the risk of explosion, but it leaves abundant vapor in the methane. This study was aimed to explore the effects of water vapor addition on the low-concentration CMM combustion in porous media. Thereby, a 2D numerical model based on a two-section ceramic foam burner setup with high flame stability was established and multi-step kinetics mechanisms were imported to the model. In this paper, the effects of vapor concentrations on the temperature distribution, flame stability limit, and chemical reaction during low-concentration CMM combustion in ceramic foam were investigated. Results indicate that with the increase of vapor mole fraction in the inlet methane, the overall temperatures in the downstream section of the burner gradually decreased, while the vapor mole fractions were linearly and negatively correlated with the peak temperatures in the burner. A small amount of vapor was involved in the chemical reactions of combustion, and with the increase of vapor mole fraction, more vapor took part in the reactions when the vapor addition into the inlet methane was unchanged. As the vapor mole fraction in the low-concentration CMM increased, the velocity range of flame stability limit was gradually narrowed down. In addition, the lower limit of velocity changed very slightly and maintained at 0.13-0.20 m/s, while the upper limit dropped obviously. The key elementary reactions underlying the effect of vapor on combustion reactions were determined by defining the changing rate of peak reaction rate. Addition of vapor into methane affected the peak rate of each elementary reaction, and altered the area of axial region where elementary reactions occurred.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuel - Volume 213, 1 February 2018, Pages 72-82
نویسندگان
, , , , , , , ,