کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7606423 1492947 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Study of the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch reactor
ترجمه فارسی عنوان
بررسی اثرات دما بر ترکیبات ترکیبی از پیلوریس گلوله های چوب با استفاده از راکتور نازل پلاک مشعل
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی
This work shows work flows supported by experimental work to analyse the efficiency of a plasma system in biomass conversion processes. The most common set of problems encountered when using biomass-to-energy (BTE) processes relate to tar formation and product gas composition. However, using plasma technology to convert biomass provides a solution because it unlocks more energy than can be achieved by other BTE systems by using a heat supply derived from electricity. The research presented in this paper focuses on the conversion of biomass to chemical energy (in gaseous form) with the aid of the electrical energy supplied by a water-cooled nitrogen plasma torch. The authors conducted a series of experiments in a continuous pyrolysis set up in which wood pellets were converted to syngas in a small-scale laboratory nitrogen plasma torch reactor with a maximum power supply of 15 kW. The efficiency of the process was measured in terms of the carbon conversion to all product gases which changed from 43 to 77%, at temperatures ranging from 400 °C to 1000 °C respectively. The combined carbon monoxide and hydrogen mole concentration in the product gas (without nitrogen) was 86% at 1:1 ratio for all temperatures studied. Syngas yield increased with increase in temperature. The overall biomass conversion obtained increased from 46% to 82% for the temperatures 400 °C to 1000 °C respectively, with the balance comprising carbon-rich solid residue and liquid. The work flow shows that a plasma system can get to high temperatures but work is also degraded in the overall process. Exergy analysis shows that the work lost by the overall process decreases with increase in process temperature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Analytical and Applied Pyrolysis - Volume 130, March 2018, Pages 159-168
نویسندگان
, , , ,