کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
799154 903417 2007 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the impact of cargo weight, vehicle parameters, and terrain characteristics on the prediction of traction for off-road vehicles
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
پیش نمایش صفحه اول مقاله
On the impact of cargo weight, vehicle parameters, and terrain characteristics on the prediction of traction for off-road vehicles
چکیده انگلیسی

A realistic prediction of the traction capacity of vehicles operating in off-road conditions must account for stochastic variations in the system itself, as well as in the operational environment. Moreover, for mobility studies of wheeled vehicles on deformable soil, the selection of the tire model used in the simulation influences the degree of confidence in the output. Since the same vehicle may carry various loads at different times, it is also of interest to analyze the impact of cargo weight on the vehicle’s traction.This study focuses on the development of an algorithm to calculate the tractive capacity of an off-road vehicle with stochastic vehicle parameters (such as suspension stiffness, suspension damping coefficient, tire stiffness, and tire inflation pressure), operating on soft soil with an uncertain level of moisture, and on a terrain topology that induces rapidly changing external excitations on the vehicle. The analysis of the vehicle–soil dynamics is performed for light cargo and heavy cargo scenarios. The algorithm relies on the comparison of the ground pressure and the calculated critical pressure to decide if the tire can be approximated as a rigid wheel or if it should be modeled as a flexible wheel. It also involves using previously-developed vehicle and stochastic terrain models, and computing the vehicle sinkage, resistance force, tractive force, drawbar pull, and tractive torque.The vehicle model used as a case study has seven degrees of freedom. Each of the four suspension systems is comprised of a nonlinear spring and a viscous (linear or magneto-rheological) damper. An off-road terrain profile is simulated as a 2-D random process using a polynomial chaos approach [Sandu C, Sandu A, Li L. Stochastic modeling of terrain profiles and soil parameters. SAE 2005 transactions. J Commer Vehicles 2005-01-3559]. The soil modeling is concerned with the efficient treatment of the impact of the moisture content on relationships critical in defining the mobility of an off-road vehicle (such as the pressure–sinkage [Sandu C et al., 2005-01-3559] and the shear stress–shear displacement relations). The uncertainties in vehicle parameters and in the terrain profile are propagated through the vehicle model, and the uncertainty in the output of the vehicle model is analyzed [Sandu A, Sandu C, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part I: theoretical and computational aspects, Multibody system dynamics. Publisher: Springer Netherlands; June 29, 2006. p. 1–23 (23), ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9007-5; Sandu C, Sandu A, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part II: numerical applications. Multibody system dynamics, vol. 15, No. 3. Publisher: Springer Netherlands; 2006. p. 241–62 (22). ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9008-4]. Such simulations can provide the basis for the study of ride performance, handling, and mobility of the vehicle in rough off-road conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Terramechanics - Volume 44, Issue 3, July 2007, Pages 221–238
نویسندگان
, ,