کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8953898 1645968 2018 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations
چکیده انگلیسی
In this paper we propose and test the validity of simple and easy-to-implement algorithms within the immersed boundary framework geared towards large scale simulations involving thousands of deformable bodies in highly turbulent flows. First, we introduce a fast moving least squares (fast-MLS) approximation technique with which we speed up the process of building transfer functions during the simulations which leads to considerable reductions in computational time. We compare the accuracy of the fast-MLS against the exact moving least squares (MLS) for the standard problem of uniform flow over a sphere. In order to overcome the restrictions set by the resolution coupling of the Lagrangian and Eulerian meshes in this particular immersed boundary method, we present an adaptive Lagrangian mesh refinement procedure that is capable of drastically reducing the number of required nodes of the basic Lagrangian mesh when the immersed boundaries can move and deform. Finally, a coarse-grained collision detection algorithm is presented which can detect collision events between several Lagrangian markers residing on separate complex geometries with minimal computational overhead.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 375, 15 December 2018, Pages 228-239
نویسندگان
, , , ,