کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10431839 910228 2014 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Viscoelastic characterisation of pig liver in unconfined compression
ترجمه فارسی عنوان
مشخصات ویسکولاستیک کبد خوک در فشرده سازی بدون محدودیت
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
چکیده انگلیسی
Understanding and modelling liver biomechanics represents a significant challenge due to the complex nature of this organ. Unfortunately, there is no consensus on liver viscoelastic properties, and results are strongly dependent on sample type and status, adopted testing method, and testing conditions. Standard force-triggered tests (e.g. step response or dynamic mechanical tests) necessitate an initial contact between sample and testing apparatus, which may result in significant pre-stress to very soft and highly hydrated samples. In a previous study we proposed the epsilon dot method (ε̇M): a testing and analysis framework to address the drawbacks of standard mechanical tests. Focusing on ex-vivo unconfined bulk compressive tests, here we use both the ε̇M and dynamic mechanical analysis (DMA) to derive liver viscoelastic parameters in the region of small strains or the linear viscoelastic region (LVR). As liver samples were visibly deteriorated at the end of frequency sweep tests, a modified approach was adopted to reduce DMA testing times. This approach, termed step-reconstructed DMA (SRDMA), is based on dynamic measurements around specific frequencies and then reconstruction of liver behaviour in the entire frequency range of interest. The instantaneous elastic modulus obtained from SRDMA tests (2.65±0.30 kPa) was significantly higher than that obtained with the ε̇M (2.04±0.01 kPa). We show that the overestimation of stiffness is due to data acquisition in a local rather than an absolute LVR, highlighting the importance of using a rapid and zero pre-stress approach to characterise very soft and highly hydrated biological tissues.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 47, Issue 11, 22 August 2014, Pages 2641-2646
نویسندگان
, , , ,