کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1400422 1501368 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development of chitosan-nanofiber-based hydrogels exhibiting high mechanical strength and pH-responsive controlled release
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Development of chitosan-nanofiber-based hydrogels exhibiting high mechanical strength and pH-responsive controlled release
چکیده انگلیسی


• Chitosan nanofiber (CNF)-based hydrogels (CNF–poly(ethylene glycol) (PEG) hydrogel) was fabricated.
• CNF addition enhanced compressive rupture stress and Young’s modulus.
• A pH decrease of buffer from 7.4 to 5.6 caused accelerated protein release from the hydrogels.

Developing naturally derived polymer-based hydrogels with high mechanical strength and a controlled release of loaded bioactive substances is essential in biomedicine and tissue engineering. Here, we report the fabrication of chitosan nanofiber (CNF)-based hydrogels (CNF–poly(ethylene glycol) (PEG) hydrogel) with a semi-penetrating network structure comprising CNF and chemically-crosslinkable PEG diacrylate (PEGDA). Scanning electron microscopy revealed a micro-porous structure, resulting from PEGDA gelation aligned with the bundles of CNF. CNF addition enhanced compressive rupture stress and Young’s modulus, indicating that it strengthened the PEGDA hydrogels. Bovine serum albumin (BSA) was encapsulated in CNF–PEG hydrogels probably via the hydrophobic interaction between CNF and BSA. A pH decrease from 7.4 to 5.6 caused accelerated BSA release from the hydrogels due to the difference in their swelling degrees. These results indicated that CNF–PEG hydrogels could be utilized as a carrier for bioactive substances that demonstrates controlled release behavior and improved mechanical properties.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Polymer Journal - Volume 67, June 2015, Pages 50–56
نویسندگان
, , ,