کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1402808 984787 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Preparation of ASA (acrylonitrile-styrene-acrylate) structural latexes via seeded emulsion polymerization
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Preparation of ASA (acrylonitrile-styrene-acrylate) structural latexes via seeded emulsion polymerization
چکیده انگلیسی

Acrylonitrile-styrene-acrylate (ASA) structural latexes were synthesized in a two-stage seeded emulsion polymerization. In the first-stage, partially cross-linked poly (n-butyl acrylate) (PnBA) and poly (n-butyl acrylate-stat-2-ethyl hexyl acrylate) P (nBA-stat-2EHA) (75/25 by wt) rubber cores were synthesized, and then in the second-stage, a hard poly (styrene-stat-acrylonitrile) (SAN) (70/30 by wt) shell was grafted on to the rubber seeds. The effects of surfactant type and second-stage monomer addition mode have been investigated on the final morphology of two-stage emulsion particles. The results indicated that an application of anionic surfactant, that is, sodium dodecyl sulfonate (SDS), along with sodium persulfate (KPS) initiator for both stages, and with first-stage tert-butyl hydroperoxide (t-BHP) and second-stage KPS initiators led to a hemisphere particle morphology. On the other hand, raspberry and core–shell structures were observed for the structural latexes, which were prepared using a non-ionic surfactant, that is, nonylphenol ethoxylated polyethylene glycol (Igepal CO-850), accompanying KPS initiator for both stages. It is clear, however, that the relative surface hydrophilicity of the core phase, altered by the surfactant type considerably affected the type of morphology formed. For obtained structural latexes, the gradual addition of the second-stage monomers to the core latexes resulted in a fairly real core–shell structure with a higher shell thickness. On the contrary, a raspberry structure in which the rubber phase was enlarged by the second-stage polymer microdomains was observed for the second-stage monomer addition batch. In fact, the shell semi-batch polymerization conditions lower the shell plasticizing effect, and increase the kinetic barrier to prevent from further second-stage monomer diffusion and microdomain formation within the rubbery phase.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Polymer Journal - Volume 45, Issue 3, March 2009, Pages 714–720
نویسندگان
, , ,