کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1553198 1513219 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrothermal fabrication of ZnO nanorod-based grating patterns with arrays of optical fiber cores as templates
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Hydrothermal fabrication of ZnO nanorod-based grating patterns with arrays of optical fiber cores as templates
چکیده انگلیسی


• Templates of optical fiber cores with specific nominal pitch were manually assembled.
• ZnO nanowire-based grating patterns were hydrothermally produced with the templates.
• The critical dimensions of the grating patterns were decided by the size of the troughs.
• The profile forms of the grating patterns were determined by substrate wettability.

A hydrothermal fabrication of ZnO nanorod-based grating patterns on Si substrates is reported. The arrays of optical fiber cores were manually assembled as templates with nominal pitches of 250 μm and 375 μm. The profiles of the templates and the grating patterns were extracted and quantitatively characterized based on micrographs of scanning electron microscopy (SEM) and Image Processing Toolbox of MATLAB. The errors of the actual pitches and the parallelism demonstrate that the process capability of manually assembling the optical fiber cores can meet the quality requirement of the templates. The critical dimensions (CDs) show that the size of the trough formed by the template and the Si substrate determines the location of the grating pattern. The characteristic parameters, including line edge roughness (LER), line width roughness (LWR), skewness (Sk), kurtosis (Ku), and correlation length (ζ), exhibit that the three-phase contact lines among the trapped air bubble, ZnO seed solution, and Si substrate (or the optical fiber core) decide the form of the grating pattern. The research found that larger nominal pitch of the template resulted in larger size of the trough which further led to less CD, and higher hydrophilicity of the Si surfaces resulted in smoother profiles whilst lower hydrophilicity of the optical fiber core surfaces led to rougher ones.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Superlattices and Microstructures - Volume 82, June 2015, Pages 124–135
نویسندگان
, , , , , , ,