کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1658565 1517677 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development and microstructural characterization of microwave cladding on austenitic stainless steel
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Development and microstructural characterization of microwave cladding on austenitic stainless steel
چکیده انگلیسی

In the present work microwave cladding was explored as a new processing method for enhancement of surface properties of austenitic stainless steel (SS-316). Cladding of nickel based powder (EWAC) was developed using microwave radiation as the heating source. This paper explains the possible mechanism of clad formation using microwave hybrid heating with the help of a schematic model. The developed clads were characterized using field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD) and measurement of Vicker's microhardness. Typical X-ray diffraction (XRD) pattern of the clad showed the presence of chromium carbide, nickel silicide and nickel iron phases that eventually contribute to enhancement in microhardness of the clads. Clads of approximately 1 mm thickness were developed without any visible interfacial cracking and had significantly less porosity (1.09%). Microstructure of clad transverse section revealed good metallurgical bond with SS-316 substrate by partial mutual diffusion of constituent elements. The microstructure of the clad was found dominantly cellular in nature. Chromium was observed segregated around the cell boundaries while iron and nickel were identified inside the cells. Chromium carbides (Cr23C6, Cr3C2) were formed during the processing and appeared at the cell boundaries. Vicker's microhardness study revealed that the hardness profile varies within the clad zone and the average microhardness of the developed clad was observed to be 304 ± 48 Hv.

Research highlights
► A novel cladding technique for surface modification has been illustrated.
► Confirms capabilities of processing metallic materials using 2.45 GHz microwave.
► Developed nickel based clad through microwave heating with partial dilution.
► Cladding was carried out using home microwave system and has cell like structure.
► Microwave clad with significantly less porosity and absence of interfacial cracks.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Surface and Coatings Technology - Volume 205, Issues 21–22, 25 August 2011, Pages 5147–5155
نویسندگان
, ,