کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
16749 42609 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22
چکیده انگلیسی


• Extra CBM1 significantly improved FmEG processivity and activity on insoluble celluloses.
• Extra CBM1 also caused an alteration of cleavage pattern on insoluble celluloses.
• Improvements in processivity and activity may arise from CBM1 binding affinity.
• Deleting N-terminal extension led to reduction in thermostability but not activity.
• N-terminal extension might play a function as flexible connector between two domains.

FmEG from Fomitiporia mediterranea is a non-modular endoglucanase composed of a 24-amino acids extension and 13-amino acids linker-like peptide at the N-terminus and a 312-amino acids GH5 catalytic domain (CD) at the C-terminus. In this study, six FmEG derivatives with deletion of N-terminal fragments or fusion with an extra family 1 carbohydrate-binding module (CBM1) was constructed in order to evaluate the contribution of CBM1 to FmEG processivity and catalytic activity. FmEG showed a weak processivity and released cellobiose (G2) and cellotriose (G3) as main end products, and cellotriose (G4) as minor end product from filter paper (FP), but more amount of G4 was released from regenerated amorphous cellulose (RAC). All derivatives had similar activity on carboxymethylcellulose (CMC) with the same optimal pH (7.0) and temperature (50 °C). However, fusing an extra CBM1 to FmEG△24 or FmEG△37 with flexible peptide significantly improved its processivity and catalytic activity to FP and RAC. Overall, 1.79- and 1.84-fold increases in the soluble/insoluble product ratio on FP, and 1.38- and 1.39-fold increases on RAC, compared to FmEG△24, were recorded for CBM1-FmEG△24 and CBM1-linker-FmEG△24, respectively. Meanwhile, they displayed 2.64- and 2.67-fold more activity on RAC, and 1.68- and 1.77-fold on FP, respectively. Similar improvement was also obtained for CBM1-linker-FmEG△37 as compared with FmEG△37. Interestingly, fusion of an extra CBM1 with FmEG also caused an alteration of cleavage pattern on insoluble celluloses. Our results suggest that such improvements in processivity and catalytic activity may arise from CBM1 binding affinity. The N-terminal 24- or 37-amino acids may serve as linker for sufficient spatial separation of the two domains required for processivity and catalytic activity. In addition, deletion of the N-terminal 24- or 37-amino acids led to significant reduction in thermostability but not the enzymatic activity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Enzyme and Microbial Technology - Volume 91, September 2016, Pages 42–51
نویسندگان
, , , , ,