کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
305715 513045 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aggregate hierarchy and carbon mineralization in two Oxisols of New South Wales, Australia
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Aggregate hierarchy and carbon mineralization in two Oxisols of New South Wales, Australia
چکیده انگلیسی


• The Oxisols studied showed aggregate hierarchy.
• Percent SOC mineralized in macro- and micro-aggregates were similar.
• Land-uses had little effect on aggregate pore geometry.

The conventional model of aggregate formation suggests a hierarchy where micro-aggregates with lower porosity and therefore reduced soil organic carbon (SOC) mineralization form inside macro-aggregates. This model has however been questioned for highly weathered Oxisols where inconclusive results regarding the presence of aggregate hierarchy have been obtained to date. We hypothesized that in Oxisols (i) an aggregate hierarchy would be present (ii) the porosity of micro-aggregates would be lower than that of macro-aggregates and (iii) pore geometry of aggregates would influence SOC mineralization. We collected topsoils from Oxisols in northern New South Wales, Australia from which macro-aggregates (>250 μm), micro-aggregates (53–250 μm) and <53 μm fractions were isolated from bulk soil by wet sieving. 3D images of macro- and micro-aggregates were produced using X-ray computed tomography (μCT) showing the presence of micro-aggregates inside macro-aggregates, which confirmed the presence of an aggregate hierarchy in the Oxisols studied. Macro-aggregates were more common and SOC in higher concentrations in forest systems compared with agricultural (the cultivation or pasture) land-uses, but aggregate geometry differed little between the land-uses studied. The porosity of macro-aggregates (4%) was significantly lower than micro-aggregates (5.5%). Despite the differences in pore geometry between macro- and micro-aggregates, SOC mineralized (SOCmin) during a 2-month incubation (at 25 °C) was similar in macro- (3% of SOC concentration) and micro-aggregates (2.8% of SOC concentration). We conclude that although aggregate hierarchy exists in these soils and that aggregate geometry did differ between aggregate size classes, there was no evidence to support the porosity exclusion principle and the assumption that SOC is preferentially stabilized within micro-aggregates in these soils.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil and Tillage Research - Volume 146, Part B, March 2015, Pages 193–203
نویسندگان
, , , , ,