کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
391656 1438020 2016 22 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله
Topic modeling and improvement of image representation for large-scale image retrieval
ترجمه فارسی عنوان
مدل سازی موضوع و بهبود بازنمایی تصویر برای بازیابی تصویر مقیاس بزرگ
کلمات کلیدی
مدل سازی موضوع؛ مدل گرافیکی احتمالاتی؛ بازیابی تصویر؛ بازنمایی تصویر؛ برنامه نویسی تصویر؛ کلمات بگ بصری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, we present a new visual search system for finding similar images in a large database. However, there are a number of challenges regarding the robustness of the image representations and the efficiency of the retrieval framework. To tackle these challenges, we first propose an encoding technique based on soft-assignment of local features to convert an entire image into a single vector, which is a compact and discriminative representation. This encoded vector is suitable for most types of efficient indexing methods to produce an initial result. To compensate for the lack of incorporating geometric and object-related information during the encoding scheme, we then propose a probabilistic topic model to formalize the spatial structure among the local features. Moreover, the topic model allows us to effectively extract the object and background regions from the image. This is performed by a Markov Chain Monte Carlo algorithm for approximate inference. Finally, benefiting from the extracted objects in each image, we present a re-ranking scheme to automatically refine the initial search results. Our proposed retrieval framework has two major advantages: i) an aggregation strategy through soft-assignment improves the discriminative power of the representation, which has a determinative effect on the retrieval precision; and ii) the probabilistic latent topic model enables us to not only gain insight into the spatial structure of the image, but also handle a large variation in the object appearance. The experimental results from four benchmark datasets show that our approach provides competitive accuracy, and runs about ten times faster. Our studies also verify that proposed approach works effectively on large-scale databases of millions of images.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 366, 20 October 2016, Pages 99–120
نویسندگان
, , , ,