کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
426188 686009 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Processing moldable tasks on the grid: Late job binding with lightweight user-level overlay
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Processing moldable tasks on the grid: Late job binding with lightweight user-level overlay
چکیده انگلیسی

Independent observations and everyday user experience indicate that performance and reliability of large grid infrastructures may suffer from large and unpredictable variations. In this paper we study the impact of the job queuing time on processing of moldable tasks which are commonly found in large-scale production grids. We use the mean value and variance of makespan as the quality of service indicators. We develop a general task processing model to provide a quantitative comparison between two models: early and late job binding in a user-level overlay applied to the EGEE Grid infrastructure. We find that the late-binding model effectively defines a transformation of the distribution of makespan according to the Central Limit Theorem. As demonstrated by Monte Carlo simulations using real job traces, this transformation allows to substantially reduce the mean value and variance of makespan. For certain classes of applications task granularity may be adjusted such that a speedup of an order of magnitude or more may be achieved. We use this result to propose a general strategy for managing access to resources and optimization of workload based on Ganga and DIANE user-level overlay tools. Key features of this approach include: a late-binding scheduler, an ability to interface to a wide range of distributed systems, an ability to extend and customize the system to cover application-specific scheduling and processing patterns and finally, ease of use and lightweight deployment in the user space. We discuss the impact of this approach for some practical applications where efficient processing of many tasks is required to solve scientific problems.

Research highlights
► Analysis of makespan for late-binding task scheduling in the EGEE/EGI Grid.
► System described by empirical distributions and simulated with Monte Carlo.
► Quality of Service metrics based on variance and average value of makespan.
► Central Limit Theorem impacts predictability and speedup for late-binding scheduling.
► User-level Overlay based on late binding demonstrated for scientific applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 27, Issue 6, June 2011, Pages 725–736
نویسندگان
, , , ,