کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4626908 1631799 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parallelization of a non-linear multi-objective optimization algorithm: Application to a location problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Parallelization of a non-linear multi-objective optimization algorithm: Application to a location problem
چکیده انگلیسی

Real-life problems usually include conflicting objectives. Solving multi-objective problems (i.e., obtaining the complete efficient set and the corresponding Pareto-front) via exact methods is in many cases nearly intractable. In order to cope with those problems, several (meta) heuristic procedures have been developed during the last decade whose aim is to obtain a good discrete approximation of the Pareto-front. In this vein, a new multi-objective evolutionary algorithm, called FEMOEA, which can be applied to many nonlinear multi-objective optimization problems, has recently been proposed. Through a comparison with an exact interval branch-and-bound algorithm, it has been shown that FEMOEA provides very good approximations of the Pareto-front. Furthermore, it has been compared to the reference algorithms NSGA-II, SPEA2 and MOEA/D. Comprehensive computational studies have shown that, among the studied algorithms, FEMOEA was the one providing, on average, the best results for all the quality indicators analyzed. However, when the set approximating the Pareto-front must have many points (because a high precision is required), the computational time needed by FEMOEA may not be negligible at all. Furthermore, the memory requirements needed by the algorithm when solving those instances may be so high that the available memory may not be enough. In those cases, parallelizing the algorithm and running it in a parallel architecture may be the best way forward. In this work, a parallelization of FEMOEA, called FEMOEA-Paral, is presented. To show its applicability, a bi-objective competitive facility location and design problem is solved. The results show that FEMOEA-Paral is able to maintain the effectiveness of the sequential version and this by reducing the computational costs. Furthermore, the parallel version shows good scalability. The efficiency results have been analyzed by means of a profiling and tracing toolkit for performance analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 255, 15 March 2015, Pages 114–124
نویسندگان
, , , ,